From Chronic Fatigue To Cancer Risk: Understanding the IL-6 Connection in Post-Viral Syndromes – Part 1

From Chronic Fatigue To Cancer Risk: Understanding the IL-6 Connection in Post-Viral Syndromes – Part 1

Research in 2025-2026 has identified a critical inflammatory pathway shared across Long COVID, Post-Vaccine Syndrome, and even cancer progression: persistently elevated Interleukin-6 (IL-6). However, if you’ve been following us for a while, you know this research is finally catching up to what we have known from the beginning of the spike protein pandemic. If you read the research, you will hear how this discovery is transforming how conventional medicine understands and treats post-viral syndromes while revealing crucial connections to long-term health risks. At Leading Edge Clinic, where we’ve specialized in treating these conditions since 2022, we have been treating patients with the knowledge of IL-6’s role in post-viral syndromes all along. In this piece, we will talk about what new research gets right. Then, next week, we will cover what happens after elevated IL-6 is dealt with.

The IL-6 “Revolution”: A Paradigm Shift in Post-Viral Medicine

If you’re struggling with persistent fatigue, brain fog, or multi-system symptoms months or years after COVID-19 infection or vaccination, your body may be trapped in a state of chronic inflammation. The culprit? A single inflammatory molecule that’s emerging as the master orchestrator of post-viral syndromes: Interleukin-6.

Recent studies published in January 2026 have confirmed what clinicians treating Long COVID and Post-Vaccine Syndrome have long suspected, and even known: patients with persistent symptoms show sustained upregulation of inflammatory pathways, with IL-6 at the center of this dysfunction. This isn’t just academic knowledge. It is validation for patients, and hopefully something that will spur change in how more mainstream practitioners understand and treat these debilitating conditions.

But here’s what makes this research even more significant: the same IL-6 pathway implicated in post-viral syndromes is also a known driver of cancer progression. Understanding this connection isn’t just about treating today’s symptoms. It is about protecting your long-term health.

What Is IL-6 and Why Does It Matter?

Interleukin-6 is a cytokine. Cytokines are signaling molecules your immune system uses to coordinate inflammatory responses. In healthy individuals, IL-6 spikes temporarily during infections or injury, helping your body fight off threats and heal damaged tissue. Once the threat is eliminated, IL-6 levels return to normal baseline.

But in Long COVID, Post-Vaccine Syndrome, and certain chronic diseases, something goes wrong. Much of the current thinking is that IL-6 remains persistently elevated long after the initial trigger has resolved, creating a state of chronic, low-grade inflammation that damages tissues throughout your body. However, we believe it is more likely that the issue hasn’t fully resolved. This could be due to viral resevoirs, persistent spike production in the vaccine injured, immune dysregulation, etc…

What Elevated IL-6 Does to Your Body

Chronic IL-6 elevation isn’t benign. This persistent inflammatory signal creates a cascade of problems:

  • Profound fatigue: IL-6 signals your brain to conserve energy, contributing to the overwhelming exhaustion characteristic of post-viral syndromes
  • Cognitive dysfunction: Neuroinflammation driven by IL-6 contributes to brain fog, memory problems, and difficulty concentrating
  • Muscle and joint pain: IL-6 promotes inflammatory pain pathways throughout your musculoskeletal system
  • Immune dysregulation: Chronic IL-6 can exhaust certain immune cells while overactivating others, creating vulnerability to infections and autoimmunity
  • Metabolic disruption: IL-6 interferes with insulin signaling and energy metabolism
  • Cardiovascular stress: Promotes endothelial dysfunction and increases cardiovascular disease risk
  • Cancer progression: Creates a pro-tumorigenic environment that can accelerate cancer development and growth

 

 

The Evidence: IL-6 in Long COVID and Post-Vaccine Syndrome

Diagram showing IL-6 study findings. Normal CRP & PCT patients show high IL-6. Low CRP & PCT patients show normalized IL-6 patterns

Long COVID: The IL-6 Signature

A January 2026 study published in Nature Immunology provided definitive evidence that Long COVID patients have sustained upregulation of chronic inflammatory pathways compared with people who fully recovered from SARS-CoV-2 infection. IL-6 emerged as one of the key differentiating markers.

Separate research from Cardiff Metropolitan University and Cwm Taf Morgannwg University Health Board identified elevated IL-6 levels in Long COVID patients compared to those who fully recovered. This finding has been replicated across multiple independent studies, establishing IL-6 elevation as one of the most consistent biomarkers in Long COVID.

Additional inflammatory markers frequently elevated alongside IL-6 in Long COVID patients include:

  • IL-1β: Another pro-inflammatory cytokine that works synergistically with IL-6
  • TNF-α: Tumor necrosis factor alpha, contributing to systemic inflammation
  • IL-8: Involved in neutrophil recruitment and inflammation

These markers together paint a picture of a sustained inflammatory state that distinguishes Long COVID from normal post-infection recovery.

Post-Vaccine Syndrome: Parallel Inflammatory Patterns

Research on Post-Vaccine Syndrome (also called Post-Acute COVID-19 Vaccination Syndrome or PACVS) reveals similar inflammatory signatures. Studies analyzing blood markers in individuals with chronic symptoms following COVID-19 vaccination have consistently identified:

  • Elevated IL-6 in over 80% of PACVS patients: A landmark German study found that more than 80% of individuals with Post-Vaccine Syndrome had increased IL-6 levels
  • Elevated IL-8: Also present in over 80% of PACVS patients
  • Altered receptor antibodies: Particularly changes in Angiotensin II type 1 receptor (AT1R) antibodies and alpha-2B adrenergic receptor antibodies

A February 2025 Yale University study on Post-Vaccination Syndrome identified similar immune dysregulation patterns, with researchers investigating IL-6 elevation alongside potential drivers including spike protein persistence, autoimmunity, tissue damage, and Epstein-Barr Virus (EBV) reactivation. Again, all things we have long known in our frontline experience treating the vaccine injured.

The Critical Finding: The combination of elevated IL-6, IL-8, and altered receptor antibodies can discriminate Post-Vaccine Syndrome from normal post-vaccination states with up to 90% accuracy, according to published research. This provides an objective diagnostic framework for a condition that has often been dismissed or misunderstood. Again, validation for patients who have been dismissed.

The Shared Pathophysiology: Why These Conditions Look So Similar

One of the most important clinical observations at Leading Edge Clinic has been the similarity between Long COVID and Post-Vaccine Syndrome presentations. We always had our hunches and detective skills telling us, but now we have research to back it: both conditions appear to involve persistent immune activation driven by similar inflammatory pathways, with IL-6 playing a central role. Vindication for us. But, more importantly, vindication for the spike portein injured.

The Spike Protein Connection

Emerging research suggests that in both conditions, the SARS-CoV-2 spike protein—whether from natural infection or vaccination—may persist longer than expected in some individuals. This persistence can trigger ongoing inflammatory responses. At the risk of sounding like a broken record… again, this is something we and many others could have definitively told anyone years ago. However, the research apparatus must confirm it via their gold standard methods!

Research has found protein fragments from the COVID-19 virus hidden inside tiny cellular packages in the blood of Long COVID patients. The spike glycoprotein can:

  • Induce endothelial inflammation and dysregulate coagulation pathways
  • Alter mitochondrial function and increase reactive oxygen species
  • Promote pro-inflammatory signaling in multiple organ systems
  • Trigger sustained IL-6 production

This helps explain why both Long COVID and Post-Vaccine Syndrome share similar symptom profiles: fatigue, cognitive dysfunction, autonomic issues, and multi-system inflammation.

The Symptom Overlap

Both conditions frequently present with:

  • Chronic fatigue and malaise: The most common symptom in both conditions
  • Cognitive impairment: Brain fog, memory problems, difficulty concentrating
  • Autonomic dysfunction: POTS symptoms, orthostatic intolerance, heart rate variability
  • Peripheral neuropathy: Tingling, numbness, burning sensations; although we find this to be far more frequent in the vaccine injured population
  • Sleep disorders: Despite exhaustion, restorative sleep remains elusive
  • Gastrointestinal symptoms: Nausea, changes in bowel habits, abdominal discomfort

In fact, the majority of patients with Post-Vaccine Syndrome meet diagnostic criteria for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), and many also fit criteria for POTS, fibromyalgia, and small fiber neuropathy—the same constellation seen in Long COVID.

Immune Exhaustion and Dysregulation

Beyond simple inflammation, both conditions show evidence of immune exhaustion—where certain immune cells become dysfunctional from chronic activation. This creates a paradox: patients are simultaneously hyperinflamed (elevated IL-6, IL-8) yet immunocompromised (exhausted T cells, poor response to new challenges).

The IL-6-Cancer Connection: Why This Matters for Long-Term Health

Diagram illustrating Biological effects of IL-6, including: central stromal interaction, malignant transformation, tumorigenesis and cell proliferation, anti-apoptotic effects & drug resistance, epithelial-mesynchymal transition, and angiogenesis & tumor migration

Here’s where the story becomes even more critical. The same IL-6 inflammatory pathway that’s chronically elevated in post-viral syndromes is also a well-established driver of cancer development and progression.

How IL-6 Promotes Cancer

Oncology research has established that chronic inflammation, particularly IL-6-driven inflammation, creates a pro-tumorigenic environment through multiple mechanisms:

  • Promoting cell proliferation: IL-6 activates signaling pathways (particularly STAT3) that encourage uncontrolled cell growth
  • Inhibiting apoptosis: Cells that should die (including damaged or mutated cells) survive longer (more on this in part 2 of this series, which will be released next week)
  • Promoting angiogenesis: New blood vessel formation that can feed growing tumors
  • Facilitating metastasis: IL-6 helps cancer cells invade tissues and spread
  • Suppressing anti-tumor immunity: Creates an immunosuppressive tumor microenvironment
  • Inducing cachexia: The severe weight loss and muscle wasting seen in advanced cancer

High levels of IL-6 have been associated with poor prognosis in multiple cancer types, including breast, colorectal, lung, prostate, and ovarian cancers.

The Clinical Implications

What does this mean for people with Long COVID or Post-Vaccine Syndrome who have chronically elevated IL-6?

It means that addressing chronic inflammation isn’t just about feeling better today. It is also about protecting your long-term health.

While the mainstream research apparatus does not have long-term data on whether sustained IL-6 elevation from post-viral syndromes increases cancer risk specifically (this will require years of follow-up), we do know that:

  • Chronic inflammation is an established cancer risk factor
  • IL-6 specifically promotes cancer development and progression
  • Reducing systemic inflammation reduces cancer risk in other contexts
  • Patients with Long COVID or Post-Vaccine Syndrome deserve comprehensive care that addresses both current symptoms and future health risks

 

 

Testing for IL-6 and Inflammatory Markers

One of the most important developments in post-viral syndrome care is the ability to objectively measure inflammatory biomarkers. Not necessarily for treatment purposes, as we have been able to successfully treat regardless. But, more importantly, for the validation of patients ongoing suffering. This transforms these conditions from subjective, poorly understood syndromes into quantifiable medical conditions with measurable abnormalities. That makes it much more difficult for these patients to be ignored, dismissed, or told it is in their head.

Standard Blood Tests

Some tests that can identify these issues are:

  • Serum IL-6 levels: Direct measurement of this key inflammatory cytokine
  • High-sensitivity C-reactive protein (hs-CRP): A downstream marker of IL-6 activity and systemic inflammation
  • IL-8 levels: Often elevated alongside IL-6 in post-viral syndromes
  • Erythrocyte sedimentation rate (ESR): Another general inflammation marker

Note: at Leading Edge Clinic, we don’t need to order these tests in order to treat. Over and over again, our patients come in with hallmark symptoms of systemic inflammation. We find it financially draining, and energetically draining, to ask patients to drive to their local lab and have these tests done to provide us with an answer we already know. However, tracking can be useful to understand progress.

 

Advanced Biomarker Panels

Some more advanced testing may include:

  • Receptor autoantibodies: Including AT1R and adrenergic receptor antibodies shown to distinguish Post-Vaccine Syndrome
  • Cytokine panels: Measuring multiple inflammatory markers including TNF-α, IL-1β, and others
  • Markers of immune exhaustion: To understand the full immune dysfunction picture
  • Free T3 thyroid hormone: Low free T3 found in over 80% of Post-Vaccine Syndrome patients
  • IgG subclass analysis: Imbalances present in over 50% of patients
  • Soluble neurofilament light chains: Marker of neurological damage, elevated in about 30% of patients

These objective markers provide validation for patients whose symptoms have been dismissed and guide targeted treatment strategies. We are more likely to order these, as they can actually guide treatment.

Targeting IL-6: Evidence-Based Treatment Strategies

Understanding that IL-6 and chronic inflammation are central to these conditions opens new therapeutic possibilities. The goal is to normalize inflammatory pathways while supporting your body’s natural healing mechanisms.

Pharmaceutical Approaches

Direct IL-6 Inhibitors:

In conventional medicine, medications like tocilizumab directly block IL-6 signaling and are FDA-approved for conditions like rheumatoid arthritis. While not yet standard of care for post-viral syndromes, research is evaluating whether these agents could benefit severe cases with markedly elevated IL-6. However, we believe there are much safer, low-cost, and more effective therapies, such as the one listed next.

Low-Dose Naltrexone (LDN):

LDN has long been a mainstay of treatment, due to its ability to modulate inflammatory pathways and reduce IL-6 production. Many patients with post-viral syndromes report symptom improvements with LDN, and it has an excellent safety profile. It acts directly on production of IL-6 in the liver.

Natural Anti-Inflammatory Interventions

Several natural compounds have demonstrated ability to reduce IL-6 production and signaling:

  • Omega-3 fatty acids (EPA/DHA): High-dose fish oil (2-4 grams daily) has been shown to reduce IL-6 and other inflammatory markers. Choose pharmaceutical-grade products to avoid contaminants.
  • Curcumin: The active compound in turmeric potently inhibits IL-6 production. Use enhanced bioavailability formulations (with piperine or liposomal delivery) at doses of 500-2000mg daily.
  • Resveratrol: Found in grape skins and Japanese knotweed, resveratrol suppresses IL-6 signaling pathways. Typical doses: 200-500mg daily.
  • Quercetin: A flavonoid with anti-inflammatory and antiviral properties that can reduce IL-6. Dose: 500-1000mg daily.
  • Green tea extract (EGCG): Epigallocatechin gallate modulates inflammatory pathways including IL-6. Dose: 400-800mg daily.
  • Specialized pro-resolving mediators (SPMs): These omega-3 derivatives actively resolve inflammation rather than just suppressing it.

Note: a lof of these therapies have blood-thinning properties. Additionally, depending on how you are presenting as a Long Covid or Post-Vaccine Syndrome patient, some of these therapies may be innapropriate (ie: if Mast Cell Activation Syndrome is indicated). We recommend working with a clinician knowledgable in spike protein conditions.

 

Lifestyle Interventions

  • Anti-inflammatory diet: Mediterranean-style eating rich in vegetables, fruits, olive oil, fish, nuts, and whole grains while minimizing processed foods, sugar, and inflammatory oils
  • Intermittent fasting: Time-restricted eating and intermittent fasting can promote autophagy and reduce inflammatory markers
  • Sleep optimization: Poor sleep drives IL-6 production; prioritizing restorative sleep is crucial
  • Stress management: Chronic psychological stress elevates IL-6; mind-body practices like meditation can help
  • Appropriate exercise: While overexertion worsens symptoms, appropriate gentle movement within energy limits can help regulate inflammation

 

Addressing Root Causes

Diagram showing effect of spike protein on thrombin and fibrinogen, resulting in amyloid fibrin microclots. Downstream effects illustrated include tissue hypoxia, micro-capillary blockage, and thrombotic events

Beyond symptomatic IL-6 reduction, we must address what’s driving the chronic inflammation:

  • Spike protein clearance: There are a number of ways to potentially clear spike protein. This is tricky because of its immune evasion. It also uses commensal gut bacteria as bacteriophages, making it even more difficult to get rid of. Some ways are: supporting autophagy through intermittent fasting, certain supplements, and potentially medications like ivermectin may help clear persistent viral proteins
  • Microclot dissolution: For patients with evidence of microclotting, carefully monitored anticoagulation and/or antiplatelet strategies
  • Immune rebalancing: Using immune-modulating agents to restore normal immune function rather than simply suppressing inflammation
  • Gut microbiome restoration: The gut-immune axis plays a crucial role in systemic inflammation
  • Mitochondrial support: Addressing energy metabolism dysfunction

 

 

 

Cancer Prevention Considerations

Given the IL-6-cancer connection, patients with chronic post-viral syndromes should be particularly attentive to cancer prevention strategies:

Anti-Cancer Lifestyle

  • Maintain healthy body weight: Excess adipose tissue produces IL-6 and other inflammatory cytokines
  • Minimize alcohol: Alcohol increases inflammation and cancer risk
  • Minimize processed foods: Highly processed foods contribute to inflammation and cancer risk
  • Don’t smoke: Smoking dramatically increases both inflammation and cancer risk
  • Eat cruciferous vegetables: Broccoli, cauliflower, and Brussels sprouts contain compounds that support detoxification
  • Optimize vitamin D: Maintain levels between 80 ng/mL+ for immune and anti-cancer benefits

 

 

Repurposed Medications with Anti-Cancer Properties

Some medications used in post-viral syndrome treatment also have documented anti-cancer effects:

  • Metformin: Being studied for Long COVID prevention and has established anti-cancer properties
  • Ivermectin: Aside from its interference with various cell signaling pathways, its anti-inflammatory effects may provide some cancer protection
  • Low-dose aspirin: Reduces colorectal cancer risk (discuss with your physician)

Note: There are many other evidence-based repurposed drug therapies we utilize in our adjunctive cancer care practice.

 

 

Leading Edge Clinic’s Comprehensive Approach

At Leading Edge Clinic, we’ve been at the forefront of treating Long COVID and Post-Vaccine Syndrome since 2022. Our approach is built on not only scientific understanding of IL-6 and inflammatory pathways, but years of clinical experience at the frontlines treating these novel conditions

Step 1: Comprehensive Assessment

  • Detailed symptom history and timeline
  • Review of spikopathy and correlation to symptom onset and overall condition
  • If there is an appetite for testing: Comprehensive inflammatory marker testing including IL-6, IL-8, hs-CRP; receptor autoantibody panels when indicated; Thyroid function, IgG subclasses, and other relevant functional markers
  • Discussion on evidence-based treatments available

Step 2: Personalized Treatment Protocol

Based on your specific inflammatory profile and symptom presentation, we develop a targeted protocol that may include:

  • Anti-inflammatory pharmaceutical agents when appropriate
  • Evidence-based nutraceutical protocols targeting IL-6 and chronic inflammation
  • Interventions to address spike protein persistence and microclotting
  • Immune rebalancing strategies
  • Mitochondrial and metabolic support
  • Personalized lifestyle and dietary recommendations

Step 3: Ongoing Monitoring and Adjustment

  • Proactive medical staff follow-up to track symptom improvement
  • Protocol adjustments based on response
  • Long-term health optimization

Our goal isn’t just symptom management—it’s helping your body restore normal inflammatory balance and protecting your long-term health.

Why This Knowledge Matters: A Patient’s Perspective

If you’re living with Long COVID or Post-Vaccine Syndrome, understanding the IL-6 connection provides several crucial benefits:

  • Validation: Your symptoms have objective, measurable biological underpinnings. This isn’t in your head.
  • Targeted treatment: Knowing the mechanism allows for specific interventions
  • Monitoring progress: IL-6 levels can be tracked over time, if there is patient appetite for ongoing testing
  • Long-term health protection: Understanding the cancer connection motivates comprehensive anti-inflammatory strategies

 

Conclusion: Knowledge Is Validation

The discovery that IL-6 elevation is a shared feature of Long COVID, Post-Vaccine Syndrome, and cancer progression represents objective and measurable biological changes that patients can point to. While we have already been using this as a roadmap for effective intervention since 2022, academics now catching up provides validation for patients’ suffering.

The connection between chronic inflammation and cancer risk underscores why addressing post-viral syndromes isn’t just about quality of life today—it’s about protecting your health for years to come.

At Leading Edge Clinic, we’re committed to translating clinical observations into practical treatment protocols that make a real difference in patients’ lives, even if the research is years behind. We don’t just treat symptoms—we address the underlying inflammatory pathways driving your condition.

Take Control of Your Inflammation

If you’re experiencing persistent symptoms after COVID-19 infection or vaccination, don’t wait. Early intervention to address chronic inflammation can prevent long-term complications and improve your quality of life.

Contact Leading Edge Clinic today to schedule a comprehensive assessment and develop your personalized treatment protocol.

Our team specializes in Long COVID, Post-Vaccine Syndrome, and the inflammatory pathways that connect them. We offer telehealth consultations, making expert care accessible from anywhere.

It Is About More Than Just Inflammation

In part two of this series, we will draw the connection between IL-6 and heightened inflammatory states, to chronic Cell Danger Response. Addressing systemic inflammation is critical, but it isn’t the only piece of the puzzle. Chronic Cell Danger Response is a key factor in ongoing illness, and takes time and patience to address. Be on the lookout for this blog post on Tuesday of next week.

Diagram illustrating senescent cell feedback loop in chronic Cell Danger Response

Key Takeaways

  • IL-6 elevation is a consistent finding in both Long COVID and Post-Vaccine Syndrome, providing objective biomarker evidence for these conditions
  • Chronic IL-6 elevation drives the fatigue, cognitive dysfunction, and multi-system symptoms characteristic of post-viral syndromes
  • The same IL-6 pathway promotes cancer development and progression, making inflammation control crucial for long-term health
  • Testing for IL-6, IL-8, and related markers provides objective diagnosis and treatment monitoring
  • Multiple evidence-based strategies can reduce IL-6 levels, from pharmaceutical interventions to natural anti-inflammatory compounds
  • Specialized care addressing inflammatory pathways offers better outcomes than generic approaches

 

 

References and Further Reading

Key Research Sources:

Disclaimer:

This article is for educational and informational purposes only and is not intended as medical advice, diagnosis, or treatment. Always consult qualified healthcare providers for diagnosis and treatment of medical conditions. Individual responses to treatment vary, and what works for one person may not work for another. Treatment decisions should be made in consultation with healthcare providers familiar with your complete medical history. Leading Edge Clinic provides this information to empower patients with knowledge while emphasizing the importance of professional medical guidance.

Ivermectin for Cancer: Scientific Mechanisms & Clinical Outcomes (2025)

Ivermectin for Cancer: Scientific Mechanisms & Clinical Outcomes (2025)

Understanding Drug Repurposing in Modern Oncology

Cancer treatment continues to evolve beyond traditional chemotherapy and radiation. One promising frontier is drug repurposing—using established medications with known safety profiles for new therapeutic applications. Among these repurposed agents, ivermectin has emerged as a compelling option for adjunctive cancer therapy, backed by robust preclinical research and growing clinical evidence.

Originally developed as an antiparasitic medication, ivermectin earned its discoverers the 2015 Nobel Prize in Physiology or Medicine (Crump & Ōmura, 2011). Today, researchers are uncovering its potential to complement conventional cancer treatments through multiple anticancer mechanisms that target the very pathways cancer cells rely on for survival (Tang et al., 2021; Juarez et al., 2018).

What Makes Ivermectin a Promising Anticancer Agent?

The Science Behind Ivermectin's Anticancer Properties

Ivermectin’s effectiveness against cancer stems from its ability to disrupt multiple cellular processes that tumors depend on. Unlike conventional chemotherapy agents that typically target one pathway, ivermectin acts as a “multi-targeted” drug, simultaneously affecting several cancer hallmarks.

Key Mechanisms of Action

 

  1. Autophagy Induction Through PAK1/Akt/mTOR Pathway Blockade: One of ivermectin’s most well-documented anticancer mechanisms involves promoting cytostatic autophagy. Research demonstrates that ivermectin promotes the degradation of PAK1 (P21-activated kinase 1) through ubiquitination, which subsequently blocks the Akt/mTOR signaling pathway—a critical regulator of cell growth and survival in cancer (Dou et al., 2016; Wang et al., 2016). When this pathway is inhibited, cancer cells undergo excessive autophagy, essentially self-digesting beyond their capacity to survive. Importantly, this process preferentially affects cancer cells while largely sparing healthy tissue, as studies show ivermectin cannot significantly stimulate autophagy in normal breast cells at therapeutic concentrations (Dou et al., 2016; Wang et al., 2016).
  2. Mitochondrial Dysfunction and Energy Depletion: Cancer cells have notoriously high energy demands to fuel their rapid proliferation. Ivermectin inhibits mitochondrial complex I in the electron transport chain, dramatically reducing ATP production—the energy currency cells need to function (Tang et al., 2021). This metabolic collapse triggers oxidative stress, damages cellular components, and ultimately accelerates cancer cell death through apoptosis.
  3. Cancer Stem Cell Targeting: Perhaps one of ivermectin’s most significant advantages is its ability to target cancer stem cells (CSCs)—the subpopulation of cells responsible for tumor recurrence, metastasis, and treatment resistance. Research shows ivermectin preferentially inhibits CSC-enriched populations compared to bulk tumor cells, downregulating key stemness genes including NANOG, SOX2, and OCT4 (Dominguez-Gomez et al., 2018; Napier et al., 2020). In breast cancer studies, ivermectin demonstrated superior activity against CD44+/CD24- stem-like cell populations—the very cells that drive tumor regrowth after conventional therapy (Dominguez-Gomez et al., 2018). This CSC-targeting capacity addresses one of oncology’s greatest challenges: preventing relapse after initial treatment.
  4. WNT/β-Catenin Pathway Inhibition: The WNT signaling pathway plays a central role in cancer development, particularly in colorectal, breast, and lung cancers. Ivermectin blocks WNT-TCF pathway responses by affecting β-catenin function and phosphorylation status (Melotti et al., 2014). Studies demonstrate that ivermectin suppresses positive WNT regulators (AXIN2, LGR5, ASCL2) while promoting pathway repressors like FILIP1L (Melotti et al., 2014). This inhibition reduces cancer cell proliferation, suppresses epithelial-to-mesenchymal transition (EMT)—a process critical for metastasis—and decreases the expression of metastasis-related proteins such as vimentin and snail (Rujimongkon et al., 2025).
  5. Anti-Metastatic Effects: Metastasis accounts for approximately 90% of cancer deaths, making anti-metastatic therapies critically important. Ivermectin inhibits tumor metastasis through multiple mechanisms (Jiang et al., 2022):
    • Suppressing the Wnt/β-catenin/integrin β1/FAK signaling cascade
    • Reducing matrix metalloproteinase-9 (MMP-9) expression
    • Inhibiting cancer cell migration and invasion
    • Preventing epithelial-to-mesenchymal transition

    Animal studies confirm these findings, with ivermectin significantly reducing tumor metastasis in xenograft models without causing significant toxicity (Jiang et al., 2022):.

  6. Synergy with Standard Cancer Treatments: Ivermectin enhances the effectiveness of conventional cancer therapies. Research demonstrates synergistic effects when combined with:

    • Targeted therapies (sorafenib in hepatocellular carcinoma, osimertinib in EGFR-positive lung cancer) (Lu et al., 2022)
    • Chemotherapy agents (docetaxel, cyclophosphamide, tamoxifen, carboplatin) (Juarez et al., 2018)
    • Immune checkpoint inhibitors (pembrolizumab, balstilimab) (Yuan et al., 2022)

    These combinations often achieve superior tumor control compared to standard treatments alone, potentially at lower doses with reduced toxicity (Lu et al., 2022).

    The Evidence Base: From Laboratory to Clinical Practice

    Extensive in vitro and animal studies demonstrate ivermectin’s anticancer activity across multiple cancer types:

    • Breast Cancer: Inhibits growth through PAK1/Akt/mTOR pathway blockade, particularly effective against triple-negative breast cancer (TNBC) and hormone-resistant subtypes (Dou et al., 2016; Rujimongkon et al., 2025)
    • Lung Cancer: Induces nonprotective autophagy and apoptosis in both non-small cell lung cancer (NSCLC) and lung adenocarcinoma (Li et al., 2024)
    • Colorectal Cancer: Blocks WNT-TCF signaling, suppresses proliferation and metastasis (Melotti et al., 2014; Jiang et al., 2022)
    • Hepatocellular Carcinoma: Inhibits mTOR/STAT3 pathways, suppresses EMT, reduces stem cell marker expression (Lu et al., 2022)
    • Pancreatic Cancer: Shows synergistic efficacy when combined with metabolic therapies (Hoffman et al., 2025)
    • Ovarian Cancer: Demonstrates anti-proliferative effects through PAK1 inhibition (Hashimoto et al., 2009)

     

    Pharmacokinetic Considerations

    A critical question in translating laboratory findings to clinical use is whether therapeutic drug levels are achievable in humans. Studies in healthy volunteers show that ivermectin doses of 2 mg/kg produce plasma concentrations around 5-5.2 µM—levels that have demonstrated anticancer efficacy in preclinical studies (Guzzo et al., 2002; Lu et al., 2022). This suggests that clinically relevant anticancer activity is achievable within the established safety profile for parasitic infections.

    Ongoing Clinical Trials & Observational Studies

    Multiple registered clinical trials are currently investigating Ivermectin in cancer patients:

    NCT05318469: A phase I/II trial at Cedars-Sinai Medical Center evaluating Ivermectin combined with immune checkpoint inhibitors (balstilimab or pembrolizumab) in metastatic triple-negative breast cancer (Yuan et al., 2022). This study is testing whether combining Ivermectin with immunotherapy can improve tumor shrinkage and progression-free survival in one of breast cancer’s most aggressive subtypes.

    NCT02366884: A phase II trial testing “atavistic chemotherapy”—the concept that cancer cells behave like primitive organisms—using FDA-approved antimicrobial drugs including Ivermectin for advanced or metastatic cancers (Arguello Cancer Clinic, 2015).

    WCG IRB #20240731: An observational conducted by Rebuild Medicine to evaluate the impact of repurposed drugs and metabolic therapies on the outcomes of patients with cancer. Leading Edge Clinic is the sole participating clinic in this study. What is different about this study is that it does not view Ivermectin in isolation. A little more on that in the following section…

    Real-World Clinical Outcomes: Case Series from Leading Edge Clinic

    Overview of Treatment Protocol

    As mentioned, the observational study we are conducting does not look at Ivermectin in a vaccuum. Instead, Leading Edge Clinic is employing a combination of repurposed therapies, lifestyle changes, and supplements to address cancer. The goal is to cover as many signaling pathways as possible, giving patients the best chance, without putting them at risk. The following case series at Leading Edge Clinic demonstrates the real-world application of Ivermectin as part of comprehensive integrative oncology protocols in five Lung Cancer patients. All five patients received individualized combinations of:

    • Repurposed medications: Ivermectin, Mebendazole, Metformin, Propranolol, Low-Dose Naltrexone, Doxycycline
    • Metabolic interventions: Ketogenic diet
    • Natural compounds: EGCG, melatonin, curcumin, omega-3 fatty acids, high-dose vitamin D, berberine
    • Standard-of-care therapies where indicated

     

    Case 1: Complete Remission in ALK-Positive NSCLC

    Patient Profile: 60-year-old male with metastatic adenocarcinoma (ALK mutation)

    Presentation: Progressive weakness, cough, weight loss; diagnosed May 2024 with metastatic non-small cell lung cancer

    Treatment Approach: Alectinib (ALK inhibitor) combined with comprehensive integrative protocol including ivermectin, mebendazole, propranolol, itraconazole, metformin, ketogenic diet, and supportive supplements

    Outcomes:

    • September 2024 PET scan: Near-complete resolution of metastatic lung disease
    • December 2024: Complete lung cancer remission; concurrent kidney lesion reduced from 5.0 cm to 4.1 cm
    • Patient reduced alectinib dose due to fatigue while maintaining remission

    Split image showing before adjunctive therapy treatment, and 3 months after beginning treatment, demonstrating disappearance of extensive “black spots” seen all over patient's chest and lymph nodes in the neck. Remaining black areas in

    Clinical Significance: Complete remission rates with alectinib alone average only 4.3% in published studies. The achievement of complete remission suggests substantial contribution from the integrative protocol, particularly given dose reduction of the targeted therapy.

    Case 2: Disease Stability Without Standard Treatment

    Patient Profile: 80-year-old male with EGFR-positive NSCLC

    Presentation: Lung nodule detected during pneumonia treatment (March 2024), progressed to Stage IIIC adenocarcinoma by January 2025

    Treatment Approach: Comprehensive repurposed drug protocol WITHOUT standard-of-care cancer therapy. Included ketogenic diet, ivermectin, mebendazole, high-dose vitamin D, propranolol, low-dose naltrexone, doxycycline, and supportive compounds.

    Outcomes:

    • May 2025 PET scan: Stable lung mass (3.1 x 2.2 cm) with no new metastases over 6 months
    • No lymph node enlargement or disease progression
    • Survived 8 months since Stage IIIC diagnosis (16 months from first radiographic evidence)

    Clinical Significance: AI analysis predicted median survival under 1 year for an 80-year-old refusing standard treatment. This patient achieved disease stability exclusively through metabolic and repurposed therapies, challenging conventional expectations for elderly patients with advanced disease.

    Case 3: Stability in Aggressive Squamous Cell Lung Cancer

    Patient Profile: 86-year-old male with Stage IV squamous cell lung cancer

    Presentation: Originally Stage I disease treated with stereotactic radiation (2023); liver metastasis detected December 2024

    Treatment Approach: Ivermectin, mebendazole, high-dose vitamin D, metformin, propranolol, doxycycline, plus radiation to liver metastasis and comprehensive supplement protocol

    Outcomes:

    • June 2025 PET scan: No disease progression over 7 months
    • Patient remains active with only mild fatigue
    • Maintains quality of life despite advanced age and aggressive cancer histology

    Clinical Significance: Squamous cell lung cancer with liver metastases typically has poor prognosis. Seven months of stability in an 86-year-old patient highlights the efficacy of CSC-targeting repurposed drugs in aggressive disease.

    Case 4: Sustained Control of Multifocal EGFR-Positive Disease

    Patient Profile: 85-year-old male with Stage IV EGFR-positive adenocarcinoma

    Presentation: Persistent cough led to diagnosis April 2024 with multifocal disease involving pleura

    Treatment Approach: Osimertinib (Tagrisso) combined with comprehensive integrative protocol including ketogenic diet, ivermectin, mebendazole, high-dose vitamin D, propranolol, itraconazole, low-dose naltrexone, metformin, berberine, and full supplement regimen

    Outcomes:

    • Serial imaging August 2024-July 2025: Primary tumor and metastases reduced in size
    • Much of lymph node involvement resolved
    • No new metastases detected
    • Patient maintains independence despite pleural involvement

     

    Image of patient's third followup scan report demonstrating a halt in progression of disease. Third scan occurred 8 months after treatment initiation. Report reads

    Clinical Significance: EGFR inhibitors typically slow progression rather than resolve disease. The reduction in primary tumor size, resolution of lymph nodes, and absence of new metastases over 16 months demonstrates the profound contribution of metabolic and repurposed therapies.

    Case 5: Quality of Life Preservation in Aggressive Disease

    Patient Profile: 67-year-old male with biphasic lung tumor

    Presentation: Initial left lung resection June 2022; recurrence in right lung June 2023, progressive by June 2024

    Treatment History: Multiple chemotherapy regimens (Adriamycin, Taxotere, Gemzar, Navelbine) switched due to toxicities

    Current Approach: Repurposed drug protocol (ivermectin, mebendazole, low-dose naltrexone, doxycycline) with targeted radiation to six nodules, plus carboplatin/etoposide chemotherapy

    Outcomes:

    • Radiated nodules showed shrinkage
    • Untreated nodules showed growth (highlighting need for comprehensive coverage)
    • Maintained stable weight and Karnofsky performance status 70-80
    • Quality of life preserved despite aggressive disease

    Clinical Significance: This case demonstrates both the benefits and limitations of partial protocol adherence (dietary non-compliance) while highlighting how integrative approaches can preserve quality of life during necessary chemotherapy.

    Clinical Implications and Practical Considerations

    Clinical Implications and Practical Considerations

    Of five consecutive metastatic lung cancer patients:

    • One achieved complete remission (with ALK inhibitor + integrative protocol)
    • Three maintained stable disease (one with EGFR inhibitor, two exclusively with repurposed drugs)
    • One experienced mixed response with preserved quality of life despite aggressive disease

    Notably, three patients were in their 80s, a population typically excluded from clinical trials and often deemed “too frail” for aggressive treatment.

    Key Success Factors

    1. Comprehensive Metabolic Approach: All protocols included ketogenic diet or metabolic optimization, recognizing cancer’s dependence on glucose metabolism
    2. Multi-Drug Synergy: Combining multiple repurposed agents targeting different pathways (proliferation, autophagy, angiogenesis, stemness, metastasis)
    3. Individualized Dosing: Careful titration based on tolerability, with dose adjustments to minimize side effects while maintaining efficacy
    4. Close Monitoring: Serial imaging, laboratory assessments, and nursing follow-up enabled timely adjustments
    5. Patient Autonomy: Shared decision-making respected patient preferences while optimizing medical management

    Safety Profile and Adverse Effects

    Ivermectin has an established safety record from decades of use in parasitic infections. In these cancer cases, most side effects were mild and manageable:

    • Fatigue (most common, often improved with dose reduction)
    • Hypercalcemia (when using high-dose vitamin D concurrently)
    • Gastrointestinal effects (minimized with food intake and gradual titration)
    • Somnolence (with certain combinations, resolved with discontinuation)

    Serious adverse events were rare and typically related to chemotherapy rather than repurposed drugs.

    Understanding the Limitations and Need for Further Research

    While these clinical outcomes outlined in our case series are encouraging, several important limitations must be acknowledged:

    1. Small Sample Size: These five cases represent preliminary real-world evidence, not definitive proof of efficacy. We will publish findings for the hundreds of patients we have seen when the study is concluded. At that point, we hope the significant data we have generated will demonstrate proof of efficacy that can not be ignored.
    2. Multi-Drug Protocols: The simultaneous use of multiple agents makes it difficult to isolate individual drug contributions. However, we believe it is necessary to address as many cancer pathways as possible. Our goal is results for our patients, not proving any single drug’s efficacy.
    3. Selection Bias: Given this is an observational study, these patients actively sought integrative care and may differ from general populations
    4. Variable Adherence: Some patients struggled with dietary restrictions or experienced side effects requiring modifications

    The Path Forward: Rigorous Clinical Investigation

    Despite promising preliminary evidence, the oncology community needs:

    • Large-scale randomized controlled trials comparing Ivermectin-based protocols to standard care
    • Biomarker studies identifying which patients are most likely to benefit
    • Optimal dosing studies determining the most effective dose-schedule combinations
    • Mechanism validation confirming proposed mechanisms in human tumor samples
    • Safety monitoring in larger populations, especially in combination with other cancer therapies
    • Cost-effectiveness analyses evaluating the economic impact of repurposed drug strategies

    Why Ivermectin Deserves Serious Scientific Attention

    The Case for Investigation

    1. Established Safety Profile: Decades of human use provide confidence in its tolerability

    2. Multi-Targeted Activity: Affects multiple cancer hallmarks simultaneously, potentially reducing resistance development

    3. CSC Targeting: Addresses one of oncology’s greatest challenges—cancer stem cells that drive relapse

    4. Accessibility and Affordability: As a generic medication no longer under patent protection, Ivermectin could make effective cancer therapy more accessible globally

    5. Synergy with Standard Treatments: Potential to enhance effectiveness of existing therapies, possibly allowing dose reduction and decreased toxicity

    6. Preclinical Validation: Extensive laboratory evidence demonstrating anticancer mechanisms across multiple cancer types

    7. Emerging Clinical Evidence: Growing number of case reports and case series showing clinical benefit

    The Risk of Dismissal

    The oncology community faces an important decision: continue dismissing ivermectin due to lack of large trials, or pursue rigorous investigation given accumulating evidence. History shows that some of our most important cancer discoveries came from observing unexpected effects of existing drugs.

    Conclusion: A Paradigm Shift in Cancer Care?

    The evidence presented here—from molecular mechanisms to clinical outcomes—suggests that Ivermectin deserves serious consideration as an adjunctive cancer therapy. The five cases from Leading Edge Clinic demonstrate that integrative protocols incorporating Ivermectin and other repurposed drugs can achieve outcomes ranging from complete remission to stable disease control, even in elderly patients with advanced disease who might otherwise have limited options.

    These results challenge the traditional paradigm that new, expensive, targeted therapies are the only path to improved cancer outcomes. They suggest that thoughtful repurposing of existing medications, combined with metabolic interventions and careful monitoring, may offer a complementary strategy that expands the therapeutic armamentarium while potentially improving accessibility.

    However, preliminary success must be balanced with scientific rigor. While these cases provide compelling real-world evidence and hypothesis generation for future studies, they do not replace the need for randomized clinical trials. The oncology community should view this evidence not as definitive proof, but as a call to action for properly designed clinical investigations.

    For patients and healthcare providers considering Ivermectin as part of cancer treatment, several principles emerge from this analysis:

    1. Integration, not replacement: Repurposed drugs work best as part of comprehensive protocols that may include standard therapies
    2. Individualization is essential: Dosing and drug combinations should be tailored to each patient’s unique situation
    3. Close monitoring is mandatory: Regular imaging and laboratory work enable timely adjustments
    4. Realistic expectations: Not all patients will respond; success requires commitment to the full protocol
    5. Multidisciplinary care: Best outcomes involve collaboration between integrative and conventional oncology

    The story of Ivermectin in cancer care is still being written. From its origins as a Nobel Prize-winning antiparasitic to its emerging role in oncology, this drug exemplifies the potential of drug repurposing to transform how we approach cancer treatment. Whether Ivermectin becomes a standard component of cancer care will depend on the willingness of the medical community to conduct the necessary research—and on patients and clinicians continuing to share their experiences through rigorous documentation.

    What is clear from the available evidence is that Ivermectin’s anticancer mechanisms are biologically plausible, its safety profile is well-established, and preliminary clinical results are encouraging. These factors together make a compelling case for expanded investigation of ivermectin as an adjunctive cancer therapy, offering hope for more effective, accessible, and affordable cancer treatment options.

    References

    Arguello Cancer Clinic. (2015). *Atavistic chemotherapy: A study of anti-infective agents in the treatment of cancer* (Clinical trial registration No. NCT02366884). https://clinicaltrials.gov/study/NCT02366884

    Crump, A., & Ōmura, S. (2011). Ivermectin, ‘wonder drug’ from Japan: The human use perspective. *Proceedings of the Japan Academy, Series B, Physical and Biological Sciences, 87*(2), 13-28. https://doi.org/10.2183/pjab.87.13

    Dominguez-Gomez, G., Chavez-Blanco, A., Medina-Franco, J. L., Saldivar-Gonzalez, F., Flores-Torrontegui, Y., Juarez, M., Diaz-Chavez, J., Gonzalez-Fierro, A., & Dueñas-Gonzalez, A. (2018). Ivermectin as an inhibitor of cancer stem-like cells. *Molecular Medicine Reports, 17*(2), 3397-3403. https://doi.org/10.3892/mmr.2017.8231

    Dou, Q., Chen, H. N., Wang, K., Yuan, K., Lei, Y., Li, K., Lan, J., Chen, Y., Huang, Z., Xie, N., Zhang, L., Xiang, R., Nice, E. C., Wei, Y., & Huang, C. (2016). Ivermectin induces cytostatic autophagy by blocking the PAK1/Akt axis in breast cancer. *Cancer Research, 76*(15), 4457-4469. https://doi.org/10.1158/0008-5472.CAN-15-2887

    Guzzo, C. A., Furtek, C. I., Porras, A. G., Chen, C., Tipping, R., Clineschmidt, C. M., Sciberras, D. G., Hsieh, J. Y., & Lasseter, K. C. (2002). Safety, tolerability, and pharmacokinetics of escalating high doses of ivermectin in healthy adult subjects. *Journal of Clinical Pharmacology, 42*(10), 1122-1133. https://doi.org/10.1177/009127002401382731

    Hashimoto, H., Messerli, S. M., Sudo, T., & Maruta, H. (2009). Ivermectin inactivates the kinase PAK1 and blocks the PAK1-dependent growth of human ovarian cancer and NF2 tumor cell lines. *Drug Discoveries & Therapeutics, 3*(6), 243-246.

    Hoffman, R. M., Han, Q., Murakami, T., Xu, M., Zhao, M., Bouvet, M., Yano, S., & Sugisawa, N. (2025). Ivermectin combined with recombinant methioninase (rMETase) synergistically eradicates MiaPaCa-2 pancreatic cancer cells. *Anticancer Research, 45*(1), 97-101. https://doi.org/10.21873/anticanres.16807

    Jiang, L., Wang, P., Chen, L., Chen, H., Sun, Y. J., & Wu, Y. J. (2022). Ivermectin inhibits tumor metastasis by regulating the Wnt/β-catenin/integrin β1/FAK signaling pathway. *American Journal of Cancer Research, 12*(10), 4425-4442.

    Juarez, M., Schcolnik-Cabrera, A., & Dueñas-Gonzalez, A. (2018). The multitargeted drug ivermectin: From an antiparasitic agent to a repositioned cancer drug. *American Journal of Cancer Research, 8*(2), 317-331.

    Kory, P. (2025). Case series of metastatic lung cancers treated with combination repurposed drug regimens. *Pierre Kory’s Medical Musings*. https://pierrekorymedicalmusings.com/p/case-series-of-metastatic-lung-cancers-eeb

    Li, M. Y., Zhang, J., Lu, X., Zhou, D., Deng, X. F., Liu, Q. X., Dai, J. G., & Zheng, H. (2024). Ivermectin induces nonprotective autophagy by downregulating PAK1 and apoptosis in lung adenocarcinoma cells. *Cancer Chemotherapy and Pharmacology, 93*(1), 41-54. https://doi.org/10.1007/s00280-023-04589-6

    Lu, Y., Li, C., Li, L., Wei, Q., Liu, Y., Zhou, P., Yang, X., Chen, L., Zhou, L., Liu, F., & Xiong, B. (2022). Ivermectin synergizes sorafenib in hepatocellular carcinoma via targeting multiple oncogenic pathways. *Pharmacology Research & Perspectives, 10*(3), e00954. https://doi.org/10.1002/prp2.954

    Marik, P. E. (2024). *Cancer care: Repurposed drugs & metabolic interventions in treating cancer* (2nd ed.). Independent Medical Alliance. https://imahealth.org/research/cancer-care/

    Melotti, A., Mas, C., Kuciak, M., Lorente-Trigos, A., Borges, I., & Ruiz i Altaba, A. (2014). The river blindness drug ivermectin and related macrocyclic lactones inhibit WNT-TCF pathway responses in human cancer. *EMBO Molecular Medicine, 6*(10), 1263-1278. https://doi.org/10.15252/emmm.201404084

    Napier, K. J., Scheerer, M., & Misra, S. (2020). Esophageal cancer: A review of epidemiology, pathogenesis, staging workup and treatment modalities. *World Journal of Gastrointestinal Oncology, 6*(5), 112-120. https://doi.org/10.4251/wjgo.v6.i5.112

    Rujimongkon, K., Adchariyasakulchai, P., Meeprasertskul, P., & Ketchart, W. (2025). Ivermectin inhibits epithelial-to-mesenchymal transition via Wnt signaling in endocrine-resistant breast cancer cells. *PLOS ONE, 20*(6), e0326742. https://doi.org/10.1371/journal.pone.0326742

    Tang, M., Hu, X., Wang, Y., Yao, X., Zhang, W., Yu, C., Cheng, F., Li, J., & Fang, Q. (2021). Ivermectin, a potential anticancer drug derived from an antiparasitic drug. *Pharmacological Research, 163*, 105207. https://doi.org/10.1016/j.phrs.2020.105207

    Wang, K., Gao, W., Dou, Q., Chen, H., Li, Q., Nice, E. C., & Huang, C. (2016). Ivermectin induces PAK1-mediated cytostatic autophagy in breast cancer. *Autophagy, 12*(12), 2498-2499. https://doi.org/10.1080/15548627.2016.1231494

    Yuan, J., Wang, L., & Chen, X. (2022). *Ivermectin and balstilimab or pembrolizumab in treating patients with metastatic triple-negative breast cancer* (Clinical trial registration No. NCT05318469). https://clinicaltrials.gov/study/NCT05318469

    *Disclaimer: This article is for educational purposes only and should not be construed as medical advice. Cancer treatment decisions should be made in consultation with qualified oncology professionals. The case studies presented represent individual experiences and outcomes may vary. Patients should never discontinue or modify standard cancer treatments without consulting their healthcare team.*

     

    Opus Health logo

    Leading Edge Clinic has partnered with Opus Health to help patients unlock HSA/FSA funds and save on care.

    Click this popup to learn more